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Abstract 
To build intelligent control systems for real-life applications, we need to design software agents which combine 
cognitive abilities to reason about complex situations, and reactive abilities to meet hard deadlines. We propose 
an operational agent model which mixes AI techniques and real-time performances. Our model is based on an 
ATN (Augmented Transition Network) to dynamically adapt the agent's behaviour to changes in the 
environment. Each agent uses a production system and is provided with a synchronization mechanism to avoid 
the possible inconsistencies of the asynchronous execution of several rule-bases. Our agents communicate by 
message-passing and are implemented in an asynchronous-object environment. We report on the use of our 
agent model in intensive care patient monitoring. 
 
Key Words: Multi-Agents, Actors, Real-Time, ATN, Production rules, Object-Oriented 
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1  INTRODUCTION 
Artificial intelligence (AI) techniques are well adapted to perform tasks such as diagnosis, 
design and classification.  To build intelligent control systems for real-life applications, AI 
techniques must handle specific real-time aspects, such as  resource limitations and guarantee 
of timely response.  This leads to the emerging research area of "real-time AI" [Charpillet and 
Théret 1994; Garvey and Lesser 1994; Musliner et al. 1995]. 
 Multi-Agent Systems (MASs) seem well adapted to model real applications.  To be useful 
for real-time domains, MASs must (1) handle asynchronous events, (2) manage resource 
overload and time constraints and (3) ensure a control of distributed autonomous entities.  
Indeed, each agent must integrate smoothly both reactive abilities, -to meet hard deadlines, 
and cognitive abilities, -to act rationally by using knowledge and -to reach a fixed goal when 
constraints are more relaxed.  
 MASs proposed in the literature rely on two approaches for communicating between 
agents: 1) the blackboard model initially introduced in Hearsay-II [Erman et al. 1980]  and 
used in several recent systems [Hayes-Roth et al. 1992; Bussmann and Demazeau 1994; 
Charpillet and Boyer 1994] ; and 2) the actor model proposed by [Hewitt 1977]   on the basis 
of various concurrent languages [Agha 1986; Yonezawa et al. 1986; Yokote and Tokoro 
1987; Ferber and Briot 1988] . 
 In the blackboard approach, knowledge sources use available information without 
knowing its origine and produce information without worrying about its fate, whereas in the 
actor approach, actors communicate with each other via message-passing.  Actors may be 
considered as the basic element for building agents.  The combination of the actor concept and 
the object paradigm leads to the notion of "agent-oriented programming" [Shoham 1993] .  
On this basis, we have designed a real-time agent model embedded in an object-oriented 
environment where properties such as encapsulation and inheritance are respected. 
 The purpose of this paper is to present our model and to show how it was used to design a 
real-time prototype for Intensive Care Unit (ICU) patient monitoring.  Section 2 presents the 
proposed real-time agent model and details the use of an ATN to adapt the agent behaviour to 
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asynchronous  changes in its environment.  Section 3 describes the behaviour of this model in 
the bosom of a society of agents.  Section 4 presents the tools we used: NéOpus and Actalk.  
In Section 5, we report the application of our model to patient monitoring.  Finally, we discuss 
the advantages of our approach to design real-time MASs.  
 
2  OUR REAL-TIME AGENT MODEL 

Figure 1: Agent model   
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Our agent model (see Figure 1) relies on a first layer including three modules: the 
communication module, the reasoning module and the perception module.  These three 
modules act asynchronously and concurrently.  A high-level supervision module allows the 
agent to reason on the states of the other modules.  The reasoning and the supervision 
modules represent respectively the decisional and meta decisional levels.  The following sub-
sections detail each module. 
 

2.1  The Supervision Module  
This module has two functions.  Firstly, it supervises the interactions between the other 
modules to control their behaviour.  Secondly, it synchronizes the execution of concurrent 
actions to avoid inconsistencies.  It relies on two notions: states and transitions.  States define 
the context in which the events introducing changes occur and transitions define the agent's 
response to these events.   
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Figure 2: The supervision module.   
Different status correspond to each module. Each combination of these status or their negation defines an agent 
state. 
 
 The supervision module is represented as an ATN [Woods 70] which defines the set of 
possible transitions linking different states.  Each transition links input and output states, the 
various signals received by the agent modules represent the conditions of transition (see Figure 
2)  and the actions of transition change the status of the various modules (activate reasoning, 
terminate reasoning, ...).  The agent's state is a combination of the status of each module.  
When these conditions are verified, the transition actions are executed and the agent's state is 
modified.  The ATN is a declarative and deterministic representation of agent's bahaviour. 
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2.2  The Perception Module  

Figure 3: The perception module   
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The perception module manages the interactions between the agent and its environment.  It 
monitors sensors, translates and filters sensed data according to the instructions of the 
reasoning or supervision modules (see Figure 3).  It may group information concerning the 
same phenomenon to facilitate interpretation.  The data set obtained is essentially used by 
reasoning. 
 

2.3  The Reasoning Module 

Figure 4: The reasoning module   
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This module defines the adapted response depending on the messages transmitted by the 
communication module, or on the changes detected by the perception module.  This response 
is a function of its know-how (operative competences) and its knowledge (cognitive 
competences).  Thus, this module includes an asynchronous production system [Guessoum 
1994]. This system mainly comprises: (1) a knowledge base which includes objects describing 
the agent's environment and rules representing suitable operations over these objects; (2) an 
inference engine  which includes a mechanism to avoid inconsistencies due to the 
asynchronous execution of several rule-bases; and (3) a meta-knowledge base which provides 
a declarative representation of the control of reasoning. 
 

2.4  The Communication Module 
The communication module (see Figure 5) allows the agent to receive and to send messages 
asynchronously.  It filters the received messages, determines their priority (LIFO, FIFO,...) and 
the type of treatment to accord them.  It sends messages to its acquaintances with various 
protocols (selective, with acknowledgement, synchronous, asynchronous).  The protocol is 
determined by  the reasoning module. 

 

Figure 5: The communication module     
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 This module implements the direct actions (modification of the environment via effectors) 
and indirect actions (information transmission to other agents) as defined by the reasoning 
module.   
 

2.5  Real-Time Characteristics 
The proposed model provides real-time characteristics at different levels: 

 • Reactivity: Via an asynchronous perception module, the agent detects real-time alarming 
situations. This feature contributes to improve the agent's response to changes. 

 • Adaptability:  After each ATN transition, the agent suspends its activity to scan the 
state changes of the perception, reasoning and communication modules.  Depending on the 
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nature of change, the agent may suspend its current reasoning process to deal with the new 
perceived data or new received messages. 

 • Real-Time Reasoning: Our agent model uses a first-order forward chaining inference 
engine called NéOpus [Pachet 1995] based on the Rete Algorithm to compile rule-bases.  The 
original key mechanisms of NéOpus include a declarative specification of control with meta 
rules.  The execution control of a rule-base is seen as a problem which requires some forms of 
knowledge.  Thus specific declarative control knowledge may be introduced to reason on 
critical situations [Dojat and Pachet 1992]. 
 
3  RELATIONS BETWEEN AGENTS 
We are interested in situations where an agent shares a collection of resources with other 
agents.  Thus, agents must adapt themselves to take advantages of resources as needed, but 
must coordinate their actions to avoid inconsistencies.  Researchers have evolved a range of 
approaches to coordinating a collection of autonomous entities.  [Durfee et al. 1987; Gasser 
1992] describe the mechanisms that improve the network coherence: organization, exchanging 
meta-level information, local and multi-agent planning, and explicit analysis and 
synchronization.  With synchronization mechanism as proposed in [Ishida 90], each agent 
protects itself against conflicts or redundant actions concerning the other agents, at a cost of 
(1) reduced concurrency, and (2) synchronization overhead.  However, if the level of 
dependency is low, and the granularity of actions is high, this mechanism can provide useful 
coordination [Gasser 1992].  This is the case for our model. The granularity of our agents is 
high: each agent possesses its own rule-base.  The agent's rules are fired sequentially and the 
internal dependency and internal interference do not have to be considered.  Thus the 
dependency between agents is low.  To avoid inconsistencies between asynchronous agents 
reasoning, we exploit two graphs namely a dependency graph and an inference graph initally 
introduced by [Ishida 90]. 
 

3.1  Dependency mechanism 
We distinguish two kinds of objects: local objects used by a single agent, and global objects 
used by several agents.  The principle of dependency mechanism may be defined as follows: 
 • each agent is provided with a dependency graph giving for each global object the list of 
agents which use it. 
 • after each global-object modification, the agent informs the other agents indicated by its 
dependency graph. 
 The dependency graph is used by the communication module to inform the other agents 
about the modification, creation or removal of global objects.  It is updated progressively 
when rules are triggered: if a global object is removed by the rule actions, it is also 
automatically removed from the dependency graph and a message is sent to the other agents to 
update their graphs. 
 

3.2  Interference mechanism 
Interference exists among two rules R1 and R2 if there is a global object O such as R1 

modifies O and R2 modifies O, R1 filters O and R2 modifies O, or R2 filters O and R1 
modifies O. 
 The principle of interference mechanism may be defined as follows: 
 • each agent is provided with an interference graph, giving for each rule the list of agents 
that have rules interfering with this rule. 
 • each agent is provided with a model of other agents giving for each agent the list of 
global objects in use.  This model is introduced to avoid the synchronization messages used by 
Ishida. 
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 • we enrich the inference engine cycle of two steps: 
 - lock: before the rule firing, the agent tests if the global objects, that the selected rule 
uses, are not locked by the other agents.  In this case, the agent the rule is triggered, otherwise 
it selects another fireable rule. 
 - unlock: This action is executed after each rule firing, it cancels the effects of the action 
lock. 
 
4  INTEGRATION OF OUR MODEL IN AN ASYNCHRONOUS OBJECT 
ENVIRONMENT 
We have opted for an environment which combines object-oriented programming and 
production rules.  We have used Smalltalk-80 and Actalk [Briot 1989]  which introduces the 
notion of actor in Smalltalk-80, the foundation stone of our model.  The reasoning module 
uses NéOpus [Pachet 1995] , a first order inference engine completely embedded in Smalltalk-
80.  We have extended these three basic components to implement our model and to propose a 
platform to build real-time MASs.  
 

4.1  Actalk  

Figure 6: the actor model in Actalk  
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The figure shows the three components of an actor: Address, Activity and ActiveObject. 
 
Actalk allows to join harmoniously objects and actors from an initial kernel.  In Actalk, an 
actor is composed of three objects (see Figure 6):  

• an object (Address) describes the address (mail box) of an active object.  It defines the 
way message transmissions will be interpreted. 

• an object (Activity) describes the internal activity of the active object.  It provides 
autonomy to the actor. It defines a process which removes continuously the messages of the 
mail box and sends up their interpretation by the active object. 

• an object (ActiveObject) describes the actor behaviour.  It computes the messages. 
 Asynchronism, a basic principle of actor languages, is implemented by enqueuing the 
received messages into the mail box.  It dissociates the message reception from its 
interpretation.  
 

4.2  NéOpus  
NéOpus introduces rule-based programming into object-oriented programming Smalltalk-80.  
The three mechanisms specific to this integration are: (1) natural typing, a mechanism which 
allows the pattern matcher to consider direct instances of classe as well as instances of its 
subclasses to be mached by the variables of a rule; (2) rule base inheritance: a rule-base inherits 
of rules of its super bases that can be redefined and/or extended and (3) declarative 
specification of control with meta rules.  Meta rules are similar to rules and are assembled in 
metabases.  A metabase controls the rule firing of the associated rule-base (see Figure 7).  
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Figure 7: The control with meta rules in NéOpus. 
This figure highlights the organisational similarity between domain knowledge and control knowledge.  The 
fired meta rules act on the firing strategy of rules, on the stop condition and on the objects moving in the 
associate rule-base net.  
 
5 FROM ACTALK OBJECTS TO AGENTS 
In this section, we illustrate the implementation of our model with an application: ICU patient 
monitoring. 
 

5.1 Application: Artificial Ventilation Control 
Briefly, the problem is to monitor in real-time various ventilation signals (tidal volume (Vt), 
respiratory rate (RR) and expired-CO2 pressure (PCO2)), in order to diagnose the patient 
current state and to adapt the mechanical assistance accordingly.  To perform this task, it is 
necessary to develop a complex temporal reasoning to diagnose the time-course of the 
patient's status [Dojat and Sayettat 1995].  In alarming situations such as hypoventilation or 
apnea the current therapy must be modified quickly (1 second).  A first system, NéoGanesh, is 
used at the hospital Henri Mondor (Créteil) [Dojat et al. 1995].  An extension of the current 
system based on a distributed architecture using our agent model, should be interesting to 
increase the system reactivity and to incorporate new distributed medical expertises.  The 
recent architecture for patient monitoring relies, for the most existing systems, on blackboard 
[Hayes-Roth et al. 1992; Quaglini et al. 1992; Sukuvaara et al. 1993].  We explore the use of 
actors paradigm for patient monitoring.  

5.2 Agents 
BasicAgent, root of the classes describing our agent behaviour, is encapsulated according to 
the Actalk principle to be transformed in active object.  All the agents have the same general 
structure but they differ in 1) their sensory-driving layer: perception and communication 
modules; 2) their behaviour: the know-how, the domain and control knowledge.  Agents are 
complex entities and the taxonomy of agents (see Figure 8) may be realized according to 
several criteria, such as type of the sensory-driving structures, know-how, type of cognitive 
functions, ... 
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ActiveObject 
 BasicAgent 
  SignalProcessor 
  CommunicatingAgent 
   Clinician 
   Intensivist 
  PerceivingAgent 
   CommunicatingReasoningAgent 
    VentilationEvolution 
    TherapyPlanning 
    TherapeuticActions 
   PerceivingReasoningAgent 
    CommunicatingPerceivingReassoningAgent 
     VentilationAnalysis 

Figure 8: Excerpt from the agents taxonomy used for articifial ventilation control application 
 
 In the monitoring of artificial ventilation application, the agents complexity is variable.  
For example, the agent SignalProcessor  has a simple bahaviour to process data acquisition.  
At the opposite,VentilationEvolution  agent has a complex bahaviour to appreciate the time-
course of patient's ventialtion. 
 

5.2.1 Supervision Module  
The supervision module represents the agent kernel.  It controls the other modules by using an 
ATN.  To implement this module, we have reused the Actalk kernel.  We have defined two 
classes: AgentActivity (subclass of Activity) and BasicAgent (subclass of ActiveObject).  
 In Actalk , Activity manages and transmits the messages which are interpreted by 
ActiveObject.  The method setProcess, which creates a process to remove continuously the 
messages buffered in the mail box, has been redefined in AgentActivity.  The new role of this 
process is to interpret the ATN. 
 
!BasicAgent methodsFor: 'atn interpreter'! 
interpreter 
|state| 
state:= atn initialState. 
state = atn finalState whileFalse:[state := atn transitionAt: state] 
 
!AgentActivity methodsFor: 'process management'! 
setProcess 
^process := [[true] whileTrue: [self activeObject interpreter]] newProcess 
 
 The ATN of VentilationEvolution manages different states of the communication and 
reasoning modules.  For example, in state 1, the condition "no message" drives to the action 
"wait" and to the persistence in the state 1.  The condition “an urgent message” drives to the 
action “read mailbox” whatever the state may be.  This agent gives priority to urgent messages 
such as alarms. 

state 1 state 2

no message/ 
wait

has a message/ 
readmail box

reasoning termined/ 
 wait

an urgent message/ 
read mailbox

no message and 
reasoning suspended/ 
activate reasoning

state 3

an urgent message/ 
read mailbox

no message and 
reasoning suspended/ 
activate reasoning

 
Figure 9: VentilationEvolution  ATN 
 

5.2.3  Perception Module 
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It is mainly characterized by a list of sensors and an instance method scan.  This method allows 
to interpret the sensors data, to compare them with the old one and to transmit new data to the 
reasoning module. 
 For example, several sensors (CO2, RR, Vt) are related to SignalProcessor agent.  It 
scans the different sensors at a variable  sample frequency, interprets the data and transmits the 
result to VentilationAnalysis  agent. 
 

5.2.3  Reasoning Module 
The reasoning module represents the agent know-how and knowledge.  The first ones are 
represented by a list of methods; the second by a NéOpus rule-base.  The latter is subclass of 
LocalRuleSet if the used objects are local or DependInterfRuleSet in the other case.  The latter 
implements the dependency and interference mechanisms. 
 For example, the reasoning module of VentilationEvolution  agent has a rule-base 
(subclass of DependInterfNeOpusRuleSet) and a metabase.  The rule-base uses a global object 
(VentilatoryState) which is also filtered by the rules of TherapeuticActions  agent.  Indeed, 
these two agents have dependency graphs to inform each other about the modification of this 
object.   
 

!VentilationEvolutionRules methodsFor: 'continuity'! 
partialContinuity 
 
|VentilatoryState s1 s2 s3 | 
 
s3 persistent. 
s1 sameAs: s3.  
s2 contradicts: s3. 
s2 between:e1 and: s3. 
s3 durationInExpertise >1.  
s2 dureeInExpertise  <= 1. 
 
actions 
s1 validity: (DiscontinuousInterval with: s1 occurenceDate with: s3 occurenceDate). 
s2 remove.s3 remove. 
s1 increaseOf: s3 duration. 

Figure 10: Example of a rule used byVentilationEvoultion  agent that matches global objects 
 

5.2.4 Communication Module  
The class representing this module derives from the class Address of Actalk.  It manages 
explicitly the various received or sent messages. It is founded on the ABCL/1 model 
[Yonezawa 86]. The main used message types are the asynchronous message sending, the 
synchronous message sending and the broadcasting message sending. 
 The synchronous messages are implemented as active objects.  Their activity consists in 
transmitting the message, waiting for the result and then forwarding it to the sender. 
 

!MessageWithSenderAndReceiver methodsFor: 'synchronous send'! 
synchronousSendTo: anAgent 
anAgent synchronousSend: aMessage. 
self process: [resultat isNil whileTrue: [self wait]] new process. 
sender forwardResult: self 

 
5.3  Asynchronous Agents Management 

Each agent is mapped to a process which interprets the corresponding ATN.  The execution 
model of all agents is closely related to the processes management by the Smalltalk virtual 
machine.  In the latter, a scheduler (Processor ) manages processes with a simple mechanism 
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based on priority levels.  It does not stop an active process i.e. it is not preemptive.  Therefore, 
each agent must free voluntarily the processor to give a chance to other agents (sociability) by 
inserting the expression Processor yield.  
 To simulate parallelism we chose a process allocation control at two levels: supervision 
module level (simulation of parallelism between agents) and perception, reasoning and 
communication modules level (simulation of the internal parallelism of the agent). 
 

!BasicAgent methodsFor: 'atn interpreter'! 
interpreter 
|state| 
state:= atn initialState. 
state= atn finalState whileFalse:  
 [state:= atn transitionAt: state. self suspendBahaviour]. 

 
 At the supervision module level, the agent suspends its activity after each transition.  A 
message suspendBahaviour (including Processor yield) is performed at the end of each 
transition by the ATN interpreter. 
 At the reasoning module level, the process control is accomplished after each rule firing.  
At the communication and the perception modules, the process control is accomplished after 
each mail box reading and at the end of the method scan.  
 

5.4  Real-Time Functioning 

 
 Figure 11: Example of alarm processing. 
 
Figure 11 describes a situation where SignalProcessor perceives an alarm signal.  The signal 
(urgent message) is then forwarded to VentilationAnalysis which suspends its reasoning 
process,  and sends a message to SignalProcessor to increase its sample frequency and then 
reactivates its reasoning.  SignalProcessor increases its frequency, but the alarm is still 
present. It sends another signal to VentilationAnalysis.  When receiving this second signal, 
VentilationAnalysis starts an analysis, diagnoses a persistent apnea and informs 
TherapeuticActions.  To analyse and process in real-time an alarm signal, TherapeuticActions 
needs two kinds of knowledge: meta rules and rules.  The meta rules used fire the rules which 
deal with alarming situations preferentially to other fireable rules. 
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 Figure 12: Important dates in the life of an event 
 
 Figure 12 gives an example of the different steps for processing an alarm signal. The 
transmission time belongs to the interval [0, 8 sec] (8 sec is the frequency of signalProcessor).  
The reaction time is the elapsed time between the perception of the alarm signal by 
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SignalProcessor and the date at which the signal is taken into account by VentilationAnalysis. 
It corresponds to the run time of an ATN transition.  The parsed time is the elapsed time 
between the date at which the message has been received by VentilationAnalysis and the date 
at which the signal has been parsed by its reasoning module.  It corresponds to the run time of 
an ATN transition to deal with the urgent message sent by SignalProcessor, the firing of 4 
meta rules to activate the rules which process the alarm situation.  Then the appropriate rule is 
triggered.  One ATN transition and the activation of 5 rules (4 metarules and one rule) are 
required to act on the ventilator to change the therapy. 
 
6  DISCUSSION  
In this paper we have proposed a real-time agent model.  We have used an object-oriented 
programming and mixed two techniques: production systems and actors and have introduced 
mechanisms to guarantee real-time response. In addition to the medical application, the model 
has been used to develop a manufacturing process simulator [Guessoum 1995] and is currently 
used to develop an economical modelling system. 
 

6.1  Characteristics of the model 
The proposed model has the following characteristics: 
 • Ability to monitor in real-time information provided by the environment. 
 • Ability to adapt its behaviour by using the supervision module on an ATN.  This allows 
to describe declaratively and concisely the dynamic changes of the behaviour to respond in real 
time to changes in the environment. 
 • Internal and external consistencies: - the internal consistency is ensured by the 
supervision module and - the external consistency is ensured by two management mechanisms 
of dependency and interference graphs. 
 • We have chosen a granularity at the rules level that seems to be acceptable in several 
industrial applications [Barachini and Grenec 1993]. 
 • The control is distributed between agents: each agent owns an ATN and a metabase for 
the control of its reasoning. 
 • Contrary to blackboard architectures for  control [Hayes-Roth 1985]  which are based on 
an opportunistic control, our control architecture always prefers meta rules to rules.  
 

6.2 Gains of the Object-Oriented Programming 
 • By using the inheritance property, we can define several coexisting actors with various 
abilities: reactive actors or cognitive agents. 
 • We have extended the discrete event simulation kernel of Smalltalk to study the temporal 
behaviour of MASs [Guessoum 1995] in a simulated real world.   
 • Various concurrent object programming mechanisms can be tested to define the 
mechanism (or the combination of mechanisms) suitable for a specific application. 
 • Each actor is an autonomous entity by means of the activate process for its messages 
management or its ATN interpretation. 
 

6.3  Extensions   
 • The implemented agents use dependency and interference graphs to avoid inconsistency 
and conflicts.  It seems interesting to explore the other approaches such as organization, 
exchanging meta-level information and local planning. 
 •Our model can be easily extended.  For example, to study communication between 
agents, we may integrate a specific module based on speech acts such as the module  
presented by [Bouron 1992]. 
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 •Our plate-form has been applied to the medical application detailled in this paper. We use 
it to develop a manufacturing process simulator [Guessoum 95] and an economical modelling 
system is under development. 
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