

 1

A Real-Time Agent Model

in an Asynchronous-Object Environment
Z. GUESSOUM*, M. DOJAT**

*LAFORIA-IBP, Université Paris 6, Boîte 169, 4, place de Jussieu,
75252 PARIS, FRANCE

**INSERM Unité 296, Faculté de Médecine
 8, avenue du Général Sarrail, 94010 CRETEIL FRANCE

e-mail: {guessoum, dojat}@laforia.ibp.fr

Abstract
To build intelligent control systems for real-life applications, we need to design software agents which combine
cognitive abilities to reason about complex situations, and reactive abilities to meet hard deadlines. We propose
an operational agent model which mixes AI techniques and real-time performances. Our model is based on an
ATN (Augmented Transition Network) to dynamically adapt the agent's behaviour to changes in the
environment. Each agent uses a production system and is provided with a synchronization mechanism to avoid
the possible inconsistencies of the asynchronous execution of several rule-bases. Our agents communicate by
message-passing and are implemented in an asynchronous-object environment. We report on the use of our
agent model in intensive care patient monitoring.

Key Words: Multi-Agents, Actors, Real-Time, ATN, Production rules, Object-Oriented
language, Artificial Ventilation.

1 INTRODUCTION
Artificial intelligence (AI) techniques are well adapted to perform tasks such as diagnosis,
design and classification. To build intelligent control systems for real-life applications, AI
techniques must handle specific real-time aspects, such as resource limitations and guarantee
of timely response. This leads to the emerging research area of "real-time AI" [Charpillet and
Théret 1994; Garvey and Lesser 1994; Musliner et al. 1995].
 Multi-Agent Systems (MASs) seem well adapted to model real applications. To be useful
for real-time domains, MASs must (1) handle asynchronous events, (2) manage resource
overload and time constraints and (3) ensure a control of distributed autonomous entities.
Indeed, each agent must integrate smoothly both reactive abilities, -to meet hard deadlines,
and cognitive abilities, -to act rationally by using knowledge and -to reach a fixed goal when
constraints are more relaxed.
 MASs proposed in the literature rely on two approaches for communicating between
agents: 1) the blackboard model initially introduced in Hearsay-II [Erman et al. 1980] and
used in several recent systems [Hayes-Roth et al. 1992; Bussmann and Demazeau 1994;
Charpillet and Boyer 1994] ; and 2) the actor model proposed by [Hewitt 1977] on the basis
of various concurrent languages [Agha 1986; Yonezawa et al. 1986; Yokote and Tokoro
1987; Ferber and Briot 1988] .
 In the blackboard approach, knowledge sources use available information without
knowing its origine and produce information without worrying about its fate, whereas in the
actor approach, actors communicate with each other via message-passing. Actors may be
considered as the basic element for building agents. The combination of the actor concept and
the object paradigm leads to the notion of "agent-oriented programming" [Shoham 1993] .
On this basis, we have designed a real-time agent model embedded in an object-oriented
environment where properties such as encapsulation and inheritance are respected.
 The purpose of this paper is to present our model and to show how it was used to design a
real-time prototype for Intensive Care Unit (ICU) patient monitoring. Section 2 presents the
proposed real-time agent model and details the use of an ATN to adapt the agent behaviour to

 2

asynchronous changes in its environment. Section 3 describes the behaviour of this model in
the bosom of a society of agents. Section 4 presents the tools we used: NéOpus and Actalk.
In Section 5, we report the application of our model to patient monitoring. Finally, we discuss
the advantages of our approach to design real-time MASs.

2 OUR REAL-TIME AGENT MODEL

Figure 1: Agent model
communication with
acquaintances / actions

Perception

Reasoning

Agent

mail box

Communication

Supervision

 messages
reception

acquaintances/
actions

Our agent model (see Figure 1) relies on a first layer including three modules: the
communication module, the reasoning module and the perception module. These three
modules act asynchronously and concurrently. A high-level supervision module allows the
agent to reason on the states of the other modules. The reasoning and the supervision
modules represent respectively the decisional and meta decisional levels. The following sub-
sections detail each module.

2.1 The Supervision Module
This module has two functions. Firstly, it supervises the interactions between the other
modules to control their behaviour. Secondly, it synchronizes the execution of concurrent
actions to avoid inconsistencies. It relies on two notions: states and transitions. States define
the context in which the events introducing changes occur and transitions define the agent's
response to these events.

an urgent
message

has simple
messages

reasoningan alarm

signal

communication

perception

no
message

reasoning
active

reasoning
terminated

 waiting
response

no alarm
signal

Status of agent
modules

transition conditions
C1,..., Cn

state i state i+1

transition actions
A1, ..., Am

ATN
Transition

Figure 2: The supervision module.
Different status correspond to each module. Each combination of these status or their negation defines an agent
state.

 The supervision module is represented as an ATN [Woods 70] which defines the set of
possible transitions linking different states. Each transition links input and output states, the
various signals received by the agent modules represent the conditions of transition (see Figure
2) and the actions of transition change the status of the various modules (activate reasoning,
terminate reasoning, ...). The agent's state is a combination of the status of each module.
When these conditions are verified, the transition actions are executed and the agent's state is
modified. The ATN is a declarative and deterministic representation of agent's bahaviour.

 3

2.2 The Perception Module

Figure 3: The perception module
Interpreter

Interface Data

setsensors

The perception module manages the interactions between the agent and its environment. It
monitors sensors, translates and filters sensed data according to the instructions of the
reasoning or supervision modules (see Figure 3). It may group information concerning the
same phenomenon to facilitate interpretation. The data set obtained is essentially used by
reasoning.

2.3 The Reasoning Module

Figure 4: The reasoning module
Knowledgeknow-how

Control
Knowledge

This module defines the adapted response depending on the messages transmitted by the
communication module, or on the changes detected by the perception module. This response
is a function of its know-how (operative competences) and its knowledge (cognitive
competences). Thus, this module includes an asynchronous production system [Guessoum
1994]. This system mainly comprises: (1) a knowledge base which includes objects describing
the agent's environment and rules representing suitable operations over these objects; (2) an
inference engine which includes a mechanism to avoid inconsistencies due to the
asynchronous execution of several rule-bases; and (3) a meta-knowledge base which provides
a declarative representation of the control of reasoning.

2.4 The Communication Module
The communication module (see Figure 5) allows the agent to receive and to send messages
asynchronously. It filters the received messages, determines their priority (LIFO, FIFO,...) and
the type of treatment to accord them. It sends messages to its acquaintances with various
protocols (selective, with acknowledgement, synchronous, asynchronous). The protocol is
determined by the reasoning module.

Figure 5: The communication module

Interpreter
Received Messages

agents
objects Sent Messages/

actions

 This module implements the direct actions (modification of the environment via effectors)
and indirect actions (information transmission to other agents) as defined by the reasoning
module.

2.5 Real-Time Characteristics
The proposed model provides real-time characteristics at different levels:

 • Reactivity: Via an asynchronous perception module, the agent detects real-time alarming
situations. This feature contributes to improve the agent's response to changes.

 • Adaptability: After each ATN transition, the agent suspends its activity to scan the
state changes of the perception, reasoning and communication modules. Depending on the

 4

nature of change, the agent may suspend its current reasoning process to deal with the new
perceived data or new received messages.

 • Real-Time Reasoning: Our agent model uses a first-order forward chaining inference
engine called NéOpus [Pachet 1995] based on the Rete Algorithm to compile rule-bases. The
original key mechanisms of NéOpus include a declarative specification of control with meta
rules. The execution control of a rule-base is seen as a problem which requires some forms of
knowledge. Thus specific declarative control knowledge may be introduced to reason on
critical situations [Dojat and Pachet 1992].

3 RELATIONS BETWEEN AGENTS
We are interested in situations where an agent shares a collection of resources with other
agents. Thus, agents must adapt themselves to take advantages of resources as needed, but
must coordinate their actions to avoid inconsistencies. Researchers have evolved a range of
approaches to coordinating a collection of autonomous entities. [Durfee et al. 1987; Gasser
1992] describe the mechanisms that improve the network coherence: organization, exchanging
meta-level information, local and multi-agent planning, and explicit analysis and
synchronization. With synchronization mechanism as proposed in [Ishida 90], each agent
protects itself against conflicts or redundant actions concerning the other agents, at a cost of
(1) reduced concurrency, and (2) synchronization overhead. However, if the level of
dependency is low, and the granularity of actions is high, this mechanism can provide useful
coordination [Gasser 1992]. This is the case for our model. The granularity of our agents is
high: each agent possesses its own rule-base. The agent's rules are fired sequentially and the
internal dependency and internal interference do not have to be considered. Thus the
dependency between agents is low. To avoid inconsistencies between asynchronous agents
reasoning, we exploit two graphs namely a dependency graph and an inference graph initally
introduced by [Ishida 90].

3.1 Dependency mechanism
We distinguish two kinds of objects: local objects used by a single agent, and global objects
used by several agents. The principle of dependency mechanism may be defined as follows:
 • each agent is provided with a dependency graph giving for each global object the list of
agents which use it.
 • after each global-object modification, the agent informs the other agents indicated by its
dependency graph.
 The dependency graph is used by the communication module to inform the other agents
about the modification, creation or removal of global objects. It is updated progressively
when rules are triggered: if a global object is removed by the rule actions, it is also
automatically removed from the dependency graph and a message is sent to the other agents to
update their graphs.

3.2 Interference mechanism
Interference exists among two rules R1 and R2 if there is a global object O such as R1

modifies O and R2 modifies O, R1 filters O and R2 modifies O, or R2 filters O and R1
modifies O.
 The principle of interference mechanism may be defined as follows:
 • each agent is provided with an interference graph, giving for each rule the list of agents
that have rules interfering with this rule.
 • each agent is provided with a model of other agents giving for each agent the list of
global objects in use. This model is introduced to avoid the synchronization messages used by
Ishida.

 5

 • we enrich the inference engine cycle of two steps:
 - lock: before the rule firing, the agent tests if the global objects, that the selected rule
uses, are not locked by the other agents. In this case, the agent the rule is triggered, otherwise
it selects another fireable rule.
 - unlock: This action is executed after each rule firing, it cancels the effects of the action
lock.

4 INTEGRATION OF OUR MODEL IN AN ASYNCHRONOUS OBJECT
ENVIRONMENT
We have opted for an environment which combines object-oriented programming and
production rules. We have used Smalltalk-80 and Actalk [Briot 1989] which introduces the
notion of actor in Smalltalk-80, the foundation stone of our model. The reasoning module
uses NéOpus [Pachet 1995] , a first order inference engine completely embedded in Smalltalk-
80. We have extended these three basic components to implement our model and to propose a
platform to build real-time MASs.

4.1 Actalk

Figure 6: the actor model in Actalk

ActiveObject

Message

*
mail box

Activity

Address

Message

The figure shows the three components of an actor: Address, Activity and ActiveObject.

Actalk allows to join harmoniously objects and actors from an initial kernel. In Actalk, an
actor is composed of three objects (see Figure 6):

• an object (Address) describes the address (mail box) of an active object. It defines the
way message transmissions will be interpreted.

• an object (Activity) describes the internal activity of the active object. It provides
autonomy to the actor. It defines a process which removes continuously the messages of the
mail box and sends up their interpretation by the active object.

• an object (ActiveObject) describes the actor behaviour. It computes the messages.
 Asynchronism, a basic principle of actor languages, is implemented by enqueuing the
received messages into the mail box. It dissociates the message reception from its
interpretation.

4.2 NéOpus
NéOpus introduces rule-based programming into object-oriented programming Smalltalk-80.
The three mechanisms specific to this integration are: (1) natural typing, a mechanism which
allows the pattern matcher to consider direct instances of classe as well as instances of its
subclasses to be mached by the variables of a rule; (2) rule base inheritance: a rule-base inherits
of rules of its super bases that can be redefined and/or extended and (3) declarative
specification of control with meta rules. Meta rules are similar to rules and are assembled in
metabases. A metabase controls the rule firing of the associated rule-base (see Figure 7).

 6

rule-base

Rete net

Conflict set

Stop condition

End

Domain
objects

Choice
strategy

meta
rule-base

Rete net

Conflict set

Stop condition

true

fasle
true

Choice
strategy

trigger action

false

Control
objects

Domain rule-base Control rule-base

trigger action

End
Figure 7: The control with meta rules in NéOpus.
This figure highlights the organisational similarity between domain knowledge and control knowledge. The
fired meta rules act on the firing strategy of rules, on the stop condition and on the objects moving in the
associate rule-base net.

5 FROM ACTALK OBJECTS TO AGENTS
In this section, we illustrate the implementation of our model with an application: ICU patient
monitoring.

5.1 Application: Artificial Ventilation Control
Briefly, the problem is to monitor in real-time various ventilation signals (tidal volume (Vt),
respiratory rate (RR) and expired-CO2 pressure (PCO2)), in order to diagnose the patient
current state and to adapt the mechanical assistance accordingly. To perform this task, it is
necessary to develop a complex temporal reasoning to diagnose the time-course of the
patient's status [Dojat and Sayettat 1995]. In alarming situations such as hypoventilation or
apnea the current therapy must be modified quickly (1 second). A first system, NéoGanesh, is
used at the hospital Henri Mondor (Créteil) [Dojat et al. 1995]. An extension of the current
system based on a distributed architecture using our agent model, should be interesting to
increase the system reactivity and to incorporate new distributed medical expertises. The
recent architecture for patient monitoring relies, for the most existing systems, on blackboard
[Hayes-Roth et al. 1992; Quaglini et al. 1992; Sukuvaara et al. 1993]. We explore the use of
actors paradigm for patient monitoring.

5.2 Agents
BasicAgent, root of the classes describing our agent behaviour, is encapsulated according to
the Actalk principle to be transformed in active object. All the agents have the same general
structure but they differ in 1) their sensory-driving layer: perception and communication
modules; 2) their behaviour: the know-how, the domain and control knowledge. Agents are
complex entities and the taxonomy of agents (see Figure 8) may be realized according to
several criteria, such as type of the sensory-driving structures, know-how, type of cognitive
functions, ...

 7

ActiveObject
 BasicAgent
 SignalProcessor
 CommunicatingAgent
 Clinician
 Intensivist
 PerceivingAgent
 CommunicatingReasoningAgent
 VentilationEvolution
 TherapyPlanning
 TherapeuticActions
 PerceivingReasoningAgent
 CommunicatingPerceivingReassoningAgent
 VentilationAnalysis

Figure 8: Excerpt from the agents taxonomy used for articifial ventilation control application

 In the monitoring of artificial ventilation application, the agents complexity is variable.
For example, the agent SignalProcessor has a simple bahaviour to process data acquisition.
At the opposite,VentilationEvolution agent has a complex bahaviour to appreciate the time-
course of patient's ventialtion.

5.2.1 Supervision Module
The supervision module represents the agent kernel. It controls the other modules by using an
ATN. To implement this module, we have reused the Actalk kernel. We have defined two
classes: AgentActivity (subclass of Activity) and BasicAgent (subclass of ActiveObject).
 In Actalk , Activity manages and transmits the messages which are interpreted by
ActiveObject. The method setProcess, which creates a process to remove continuously the
messages buffered in the mail box, has been redefined in AgentActivity. The new role of this
process is to interpret the ATN.

!BasicAgent methodsFor: 'atn interpreter'!
interpreter
|state|
state:= atn initialState.
state = atn finalState whileFalse:[state := atn transitionAt: state]

!AgentActivity methodsFor: 'process management'!
setProcess
^process := [[true] whileTrue: [self activeObject interpreter]] newProcess

 The ATN of VentilationEvolution manages different states of the communication and
reasoning modules. For example, in state 1, the condition "no message" drives to the action
"wait" and to the persistence in the state 1. The condition “an urgent message” drives to the
action “read mailbox” whatever the state may be. This agent gives priority to urgent messages
such as alarms.

state 1 state 2

no message/
wait

has a message/
readmail box

reasoning termined/
 wait

an urgent message/
read mailbox

no message and
reasoning suspended/
activate reasoning

state 3

an urgent message/
read mailbox

no message and
reasoning suspended/
activate reasoning

Figure 9: VentilationEvolution ATN

5.2.3 Perception Module

 8

It is mainly characterized by a list of sensors and an instance method scan. This method allows
to interpret the sensors data, to compare them with the old one and to transmit new data to the
reasoning module.
 For example, several sensors (CO2, RR, Vt) are related to SignalProcessor agent. It
scans the different sensors at a variable sample frequency, interprets the data and transmits the
result to VentilationAnalysis agent.

5.2.3 Reasoning Module
The reasoning module represents the agent know-how and knowledge. The first ones are
represented by a list of methods; the second by a NéOpus rule-base. The latter is subclass of
LocalRuleSet if the used objects are local or DependInterfRuleSet in the other case. The latter
implements the dependency and interference mechanisms.
 For example, the reasoning module of VentilationEvolution agent has a rule-base
(subclass of DependInterfNeOpusRuleSet) and a metabase. The rule-base uses a global object
(VentilatoryState) which is also filtered by the rules of TherapeuticActions agent. Indeed,
these two agents have dependency graphs to inform each other about the modification of this
object.

!VentilationEvolutionRules methodsFor: 'continuity'!
partialContinuity

|VentilatoryState s1 s2 s3 |

s3 persistent.
s1 sameAs: s3.
s2 contradicts: s3.
s2 between:e1 and: s3.
s3 durationInExpertise >1.
s2 dureeInExpertise <= 1.

actions
s1 validity: (DiscontinuousInterval with: s1 occurenceDate with: s3 occurenceDate).
s2 remove.s3 remove.
s1 increaseOf: s3 duration.

Figure 10: Example of a rule used byVentilationEvoultion agent that matches global objects

5.2.4 Communication Module
The class representing this module derives from the class Address of Actalk. It manages
explicitly the various received or sent messages. It is founded on the ABCL/1 model
[Yonezawa 86]. The main used message types are the asynchronous message sending, the
synchronous message sending and the broadcasting message sending.
 The synchronous messages are implemented as active objects. Their activity consists in
transmitting the message, waiting for the result and then forwarding it to the sender.

!MessageWithSenderAndReceiver methodsFor: 'synchronous send'!
synchronousSendTo: anAgent
anAgent synchronousSend: aMessage.
self process: [resultat isNil whileTrue: [self wait]] new process.
sender forwardResult: self

5.3 Asynchronous Agents Management

Each agent is mapped to a process which interprets the corresponding ATN. The execution
model of all agents is closely related to the processes management by the Smalltalk virtual
machine. In the latter, a scheduler (Processor) manages processes with a simple mechanism

 9

based on priority levels. It does not stop an active process i.e. it is not preemptive. Therefore,
each agent must free voluntarily the processor to give a chance to other agents (sociability) by
inserting the expression Processor yield.
 To simulate parallelism we chose a process allocation control at two levels: supervision
module level (simulation of parallelism between agents) and perception, reasoning and
communication modules level (simulation of the internal parallelism of the agent).

!BasicAgent methodsFor: 'atn interpreter'!
interpreter
|state|
state:= atn initialState.
state= atn finalState whileFalse:
 [state:= atn transitionAt: state. self suspendBahaviour].

 At the supervision module level, the agent suspends its activity after each transition. A
message suspendBahaviour (including Processor yield) is performed at the end of each
transition by the ATN interpreter.
 At the reasoning module level, the process control is accomplished after each rule firing.
At the communication and the perception modules, the process control is accomplished after
each mail box reading and at the end of the method scan.

5.4 Real-Time Functioning

 Figure 11: Example of alarm processing.

Figure 11 describes a situation where SignalProcessor perceives an alarm signal. The signal
(urgent message) is then forwarded to VentilationAnalysis which suspends its reasoning
process, and sends a message to SignalProcessor to increase its sample frequency and then
reactivates its reasoning. SignalProcessor increases its frequency, but the alarm is still
present. It sends another signal to VentilationAnalysis. When receiving this second signal,
VentilationAnalysis starts an analysis, diagnoses a persistent apnea and informs
TherapeuticActions. To analyse and process in real-time an alarm signal, TherapeuticActions
needs two kinds of knowledge: meta rules and rules. The meta rules used fire the rules which
deal with alarming situations preferentially to other fireable rules.

Creation
date

Reception
date

Take into
acount
date

Parsed
date

Transmission
Time

Reaction
Time Parsed Time

12:07:23 12:07:31 12:07:31 12:07:35

 Figure 12: Important dates in the life of an event

 Figure 12 gives an example of the different steps for processing an alarm signal. The
transmission time belongs to the interval [0, 8 sec] (8 sec is the frequency of signalProcessor).
The reaction time is the elapsed time between the perception of the alarm signal by

 10

SignalProcessor and the date at which the signal is taken into account by VentilationAnalysis.
It corresponds to the run time of an ATN transition. The parsed time is the elapsed time
between the date at which the message has been received by VentilationAnalysis and the date
at which the signal has been parsed by its reasoning module. It corresponds to the run time of
an ATN transition to deal with the urgent message sent by SignalProcessor, the firing of 4
meta rules to activate the rules which process the alarm situation. Then the appropriate rule is
triggered. One ATN transition and the activation of 5 rules (4 metarules and one rule) are
required to act on the ventilator to change the therapy.

6 DISCUSSION
In this paper we have proposed a real-time agent model. We have used an object-oriented
programming and mixed two techniques: production systems and actors and have introduced
mechanisms to guarantee real-time response. In addition to the medical application, the model
has been used to develop a manufacturing process simulator [Guessoum 1995] and is currently
used to develop an economical modelling system.

6.1 Characteristics of the model
The proposed model has the following characteristics:
 • Ability to monitor in real-time information provided by the environment.
 • Ability to adapt its behaviour by using the supervision module on an ATN. This allows
to describe declaratively and concisely the dynamic changes of the behaviour to respond in real
time to changes in the environment.
 • Internal and external consistencies: - the internal consistency is ensured by the
supervision module and - the external consistency is ensured by two management mechanisms
of dependency and interference graphs.
 • We have chosen a granularity at the rules level that seems to be acceptable in several
industrial applications [Barachini and Grenec 1993].
 • The control is distributed between agents: each agent owns an ATN and a metabase for
the control of its reasoning.
 • Contrary to blackboard architectures for control [Hayes-Roth 1985] which are based on
an opportunistic control, our control architecture always prefers meta rules to rules.

6.2 Gains of the Object-Oriented Programming
 • By using the inheritance property, we can define several coexisting actors with various
abilities: reactive actors or cognitive agents.
 • We have extended the discrete event simulation kernel of Smalltalk to study the temporal
behaviour of MASs [Guessoum 1995] in a simulated real world.
 • Various concurrent object programming mechanisms can be tested to define the
mechanism (or the combination of mechanisms) suitable for a specific application.
 • Each actor is an autonomous entity by means of the activate process for its messages
management or its ATN interpretation.

6.3 Extensions
 • The implemented agents use dependency and interference graphs to avoid inconsistency
and conflicts. It seems interesting to explore the other approaches such as organization,
exchanging meta-level information and local planning.
 •Our model can be easily extended. For example, to study communication between
agents, we may integrate a specific module based on speech acts such as the module
presented by [Bouron 1992].

 11

 •Our plate-form has been applied to the medical application detailled in this paper. We use
it to develop a manufacturing process simulator [Guessoum 95] and an economical modelling
system is under development.

7 BIBLIOGRAPHY
[Agha 1986] G. Agha. Actors: a model of concurrent computation in distributed systems. Cambridge MA
(USA), MIT Press 1986.
[Barachini and Granec 1993] F. Barachini and R. Granec. Productions systems for process control:
advances and experiences. Applied Artificial Intelligence 7: 301-316, 1993.
[Bouron 19992] T. BOURON. What architecture for communicatios among computational agents. Report
LAFORIA 92/35, novembre 1992;
[Briot 1989] J-P. Briot. Actalk: a testbed for classifying and designing actor langages in the Smalltalk-80
environnement. ECOOP'89, Cook, p. 109-130,1989.
[Bussmann and Demazeau 1994] S. Bussmann Y. and Demazeau. An agent model combining reactive and
cognitive capabilities. IEEE International Conference on Intelligent Robots and Systems - IROS'S 94,
München, 1994.
[Charpillet and Boyer 1994] F. Charpillet and A. Boyer . Incorporating AI techniques into predictable
real-time systems: Reakt outcome. 14ème journées internationales Avignon'94, Avignon, p. 121-135,1994.
[Charpillet and Théret 1994] F. Charpillet and P. Théret. I.A. et temps réel. Bulletin de l'AFIA 17: 19-
42, 1994.
[Dojat and pachet 1992] M. Dojat and F. Pachet. NéOganesh: an extensible Knowledge-Based System for
the Control of Mechanical Ventilation. 14th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, Paris, pp. 920-921, 1992.
[Dojat et al. 1995] M. Dojat et al. Clinical evaluation of a knowledge-based system providing
ventilatory management and decision for extubation during weaning from mechanical ventilation. American
Journal of Respiratory and Critical Care Medicine : to appear, 1995.
[Dojat and Sayettat 1996] M. Dojat and C. Sayettat. A realistic model for temporal reasoning in real-time
patient monitoring. Applied Artificial Intelligence : to appear in vol. 10 n°2, 1996.
[Durfee et al. 1987] Edmund H. Durfee, Victor R. Lesser, Daniel D. Corkill. Coherent Cooperation
Among Communicationg Problem Solvers. IEEE Transactions on Computers 36(11): 1275-1291 ,1987.
[Erman et al. 1980] Erman L D, F. Hayes-Roth, V. Lesser. The Hearsay II speech understanding
system: integrating knowledge to resolve uncertainty. ACM Computing Surveys 12 (2), 1980.
[Ferber 1995] J. Ferber. Les systèmes multi-agents, vers une intelligence collective. InterEdition, France,
1995.
[Ferber and Briot 1988] J. Ferber J-P. and Briot. Design of concurrent langage for distributed artificial
intelligence. International Conference on Fifth Generation Computer Systems, Tokyo, Icot, p. 755-762,1988.
[Gasser 1992] L. Gasser. An Overview of DAI. in Distributed Artificial Intelligence. N. M. Avouris and L.
Gasser (eds.), Klewer Academic Publisher, Boston, 1992.
[Garvey and Lesser 1994] A. Garvey and V. Lesser. A survey of research in deliberative real-time artificial
intelligence. Journal of Real-Time Systems 6 (3): 313-347, 1994.
[Guessoum 1994] Z. Guessoum. Systèmes asynchrones de production. Journées Intelligence
Artificielle Distribuée et Systèmes Multi-Agents, Voiron, 9-11 mai, 1994.
[Guessoum 1995] Z. Guessoum. A framework integrating an object-oriented multi-agent system and
discrete event simulation. First LAAS International Conference, Beirut, pp. 165-173, 1995.
[Hayes-Roth 1985] B. Hayes-Roth. Blackboard architecture for control. Artificial Intelligence 26: 251-
321, 1985.
[Hayes-Roth et al. 1992] B. Hayes-Roth, et al. Guardian: a prototype intelligent agent for intensive-care
monitoring. Artificial Intelligence in Medicine 4: 165-185, 1992.
 [Hewitt 1977] C. Hewitt. Viewing control structures as patterns of passing messages. Artificial Intelligence
8 (3): 323-364, 1977.
[Ishida 1990] T. Ishida. Methods and effectiveness of parallel rule firing. IEEE Conf on Artificial
Intelligence Applications, Washington, p. 116-122,1990.
[Musliner et al. 1995] D. J. Musliner, et al. The Challenge of Real-TIme AI. Computer (January): 58-66,
1995.
[Pachet 1995] Pachet F. On the embeddability of production rules in object-oriented languages. Journal of
Object-Oriented Programming (june), 1995.
[Quaglini et al. 1992] S. Quaglini, et al. Hybrid knowledge-based systems for therapy planning. Artificial
Intelligence in Medicine 4: 207-226, 1992.
[Shoham 1993]. Y. Shoham. Agent-oriented programming. Artificial Intelligence 60: 139-159, 1993.

 12

 [Sukuvaara et al. 1993] T. I. Sukuvaara, et al. Object-oriented implementation of an architecture for patient
monitoring. IEEE Transactions in Biology Engineering 12 (4): 69-81, 1993.
[Woods 1970] W. Woods. Transition network grammar for natural language analysis. Communication of
Association of Computing Machinery 13 (10): 591-606, 1970.
[Yokote and Tokoro 1987] Y. Yokote and M. Tokoro. Experience and evolution of Concurrent
Smalltalk. Object-Oriented Programming Systems, Languages and Applications, Orlando (USA), Special issue
of SIGPLAN notices, ACM, p. 406-415,1987.
[Yonezawa et al. 1986] A. Yonezawa, J-P. Briot, E. Shibayama. Object-oriented concurrent programming
in ABCL/1. Object-Oriented Programming Systems, Languages and Applications, Portland (USA), Special
issue of SIGPLAN notices, ACM, p. 258-268,1986.

